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Interactions between wildlife and livestock can lead to cross-species disease transmis-
sion, which incurs economic costs and threatens wildlife conservation. Wild waterfowl 
are natural hosts of avian influenza viruses (AIVs), are often abundant near poultry 
farms, and have been linked to outbreaks of AIVs in poultry. Interspecific and sea-
sonal variation in waterfowl movement and habitat use means that the risk of disease 
transmission between wild birds and poultry inevitably varies across species, space, 
and time. Here, we used GPS telemetry data from 10 waterfowl species in and near 
California’s Central Valley, a region where both wild waterfowl and domestic poultry 
are abundant, to study selection of poultry farms by waterfowl across diel, seasonal, 
and annual cycles. We found that waterfowl selected for wetlands, open water, pro-
tected areas, and croplands, which meant that they generally avoided habitats that were 
likely to be used for poultry farming. These selection patterns were linked to species’ 
ecology and diel behavioral patterns, such that avoidance of poultry habitats was stron-
ger for local or partial migrants than for long-distance migrants, and stronger during 
daytime than at night. We then combined these habitat selection results with data on 
poultry farm locations to map risk of waterfowl–poultry contact across the Central 
Valley. Average selection strength at poultry farms was low, suggesting that current 
placement of poultry farms is generally effective for limiting risk of contact with wild 
birds. When we combined these habitat selection results with data on species’ abun-
dances and AIV infection prevalence, we found dramatic variation in potential AIV 
transmission risk among species. These results could be used to prioritize surveillance 
and biosecurity efforts for regions and times of relatively high risk. More generally, 
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these results highlight that fine-scale movement data can help identify interspecific, seasonal, and diel patterns in animal 
behaviors that affect wildlife and poultry health.

Keywords: avian influenza, habitat selection, poultry, spillover, step-selection, waterfowl, wildlife–agriculture interface

Introduction

Agricultural development and urbanization are increasing the 
frequency of interactions among wildlife, domestic animals, 
and people, which can lead to cross-species disease transmis-
sion and the emergence of infectious diseases in wildlife, live-
stock, and humans (Bradley and Altizer 2007, Hassell et al. 
2017). Some wildlife–livestock–human interfaces are more 
likely than others to promote cross-species disease transmis-
sion (Hassell et al. 2017). For instance, systems where wildlife 
and livestock are closely related are more likely to be points of 
transmission than ones where livestock are taxonomically dis-
tinct from wildlife (e.g. bovine tuberculosis in wild ungulates 
and domestic cattle, Renwick et al. 2007, Olival et al. 2017). 
In addition, viral and bacterial pathogens are more likely to 
cross species boundaries than helminth, fungal, or protozoan 
parasites, possibly because they have higher mutation rates 
(Jones  et  al. 2008). The frequency of interactions between 
wildlife and livestock also depends on habitat selection by 
wildlife (Hahn et al. 2014). Wildlife species, populations, or 
individuals that tolerate (or are attracted to) urban and agri-
cultural landscapes are more likely to contact humans and 
domestic animals than are those that avoid these developed 
landscapes (Rayl et al. 2021).

Cross-species disease transmission is important for the 
ecology of avian influenza viruses (AIVs). Wild ducks, 
geese, and swans (i.e. waterfowl) are natural reservoirs of low 
pathogenic avian influenza (LPAI) and AIVs frequently cir-
culate among multiple waterfowl species (Olsen et al. 2006, 
Hicks  et  al. 2022). When introduced to domestic poultry 
populations, LPAI can mutate into highly pathogenic avian 
influenza (HPAI; Capua and Alexander 2006, Hill and 
Runstadler 2016), which can cause significant morbidity 
and mortality, sometimes affecting tens of millions of birds 
(Ramos et al. 2017, Harvey et al. 2023, Lean et al. 2023). 
Genetic evidence shows that outbreaks of HPAI in wild birds 
and poultry result from transmission between wild birds 
and poultry, as well as from transmission within wild bird 
populations or among poultry farms (Verhagen et al. 2021, 
King et al. 2022). The ongoing global outbreaks of HPAI are 
threatening sensitive wild bird species (Harvey  et  al. 2023, 
Lean et al. 2023) and HPAI occasionally infects wild mam-
mals and humans (Lycett et al. 2019, Chauhan and Gordon 
2021). Because of the importance of waterfowl–poultry con-
tact for HPAI transmission, characterizing the probability 
and nature of this contact is important for informing bios-
ecurity and wildlife management, with implications for wild 
bird, mammal, and poultry health.

Habitat use and local abundances of wild water-
fowl have been linked to AIV outbreaks in both poultry 

(Humphreys et al. 2020, Lee et al. 2020, Hill et al. 2021) 
and wild waterfowl (Gaidet et al. 2012, Gorsich et al. 2021). 
Waterfowl sometimes inhabit areas adjacent to poultry 
farms, indicating a viable pathway for direct or indirect AIV 
transmission between wild birds and poultry (Velkers et al. 
2021, McDuie et al. 2022). The risk of cross-species trans-
mission of AIVs should therefore be higher when wild 
waterfowl travel near poultry farms. Accordingly, estimates 
of AIV transmission risk have drawn on data on wild bird 
abundance (Prosser  et  al. 2016a), but are often based on 
abundance estimates at moderate to coarse spatial scales (e.g. 
1–30 km2, Prosser et al. 2016a), which provides an impor-
tant foundation for risk assessments but does not account 
for small-scale variation in habitat conditions. In addition, 
many studies of waterfowl–poultry interactions have either 
ignored differences between wild bird species or have focused 
on a single species (Humphreys  et  al. 2021). However, 
because viral prevalence (Garamszegi and Møller 2007, 
Hill  et  al. 2010, Bianchini  et  al. 2021, Kent  et  al. 2022), 
susceptibility to influenza (Brown et al. 2006), habitat use 
(Isola et al. 2000), and movement patterns (McDuie et al. 
2019) differ among species and functional groups, the risk 
of influenza transmission between wild birds and poultry 
will also vary across taxa (Hill et al. 2022). Therefore, it is 
important to study patterns of potential wild bird–poultry 
contact across multiple taxa.

California is known for both its agricultural produc-
tion and its density and diversity of waterfowl. The Central 
Valley of California is a hotspot for overwintering migratory 
waterfowl, many of which use agricultural fields as habitat 
(Gilmer et al. 1982), and where cross-species transmission of 
LPAIVs among wild waterfowl is common (Hill et al. 2012). 
This use of agricultural areas by waterfowl provides opportu-
nities for creating multifunctional landscapes for agriculture 
and conservation (Plieninger et al. 2012), but also increases 
the risk of AIV transmission at the wildlife–poultry and 
wildlife–agriculture interfaces (Belkhiria  et  al. 2016). Wild 
waterfowl have been observed at and near livestock facili-
ties in California (McDuie et al. 2022) and waterfowl abun-
dance tends to peak near Central Valley poultry facilities in 
mid-winter (Acosta et al. 2021). Several outbreaks of HPAI 
occurred in both wild birds and poultry in California in 2022 
(USDA APHIS 2022a, b), but the sources of each outbreak 
are not yet known. 

Here, we used high-resolution tracking data from 10 
waterfowl species to analyze selection of poultry farm habi-
tats in California across space, seasons, and species. We then 
used these results to calculate spatially and temporally explicit 
estimates of wild bird selection for poultry farms in the 
Central Valley. We expected that birds would generally select 
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for natural habitats (e.g. wetlands, open water) and agricul-
tural forage (i.e. rice fields) over poultry habitats, and that 
variation in selection across seasons, species, and times of day 
would translate to inter-specific and temporal variation in the 
risk of waterfowl–poultry contact.

Material and methods

Wild bird telemetry

We used GPS tracking data to measure habitat selection of 
wild waterfowl. Species included in this study were two spe-
cies of goose: greater white fronted goose (Pacific: Anser albi-
frons sponsa and tule: Anser albifrons elgasi) and lesser snow 
goose Chen caerulescens; one diving duck species: canvasback 
Aythya valisineria; and seven dabbling duck species: northern 
pintail Anas acuta, mallard A. platyrhynchos, green-winged teal 
A. carolinensis, cinnamon teal Spatula cyanoptera, northern 
shoveler S. cylpeata, gadwall Mareca strepera and American 
wigeon M. americana. Geese, canvasback, northern pintail 
and American wigeon are long-distance migrants; the other 
dabbling duck species are partial or local migrants, with at 
least some GPS-tracked individuals remaining in California 
over summer to breed and molt.

Adult birds were captured and fitted with GPS transmit-
ters at multiple locations and during multiple seasons in the 
Central Valley and the San Francisco Bay Estuary between 
2015 and 2020. GPS transmitters on geese and dabbling 
ducks were programmed to provide locations every 30 min, 
unless battery levels were low, in which case they provided 
locations every 1–12 h. Implanted GPS transmitters on can-
vasbacks were programmed to provide locations every 3 h. 
For more detail on capture and marking, Supporting infor-
mation , McDuie et al. (2019), and Teitelbaum et al. (2023a).

Poultry and land cover data

We gathered data on the spatial distribution of poultry farms 
in California from the farm location and agricultural produc-
tion simulator (FLAPS), which provides a surface depicting 
the probability of poultry farm occurrence (hereafter ‘poul-
try habitat’) at 100 m resolution for the contiguous USA 
(Burdett et al. 2015, Patyk et al. 2020). Values, which range 
from 0 to 1, represent the relative suitability of a given loca-
tion for poultry farming (Supporting information) based on 
slope and distance to roads, croplands, water, urban land 
cover and open areas (Patyk  et  al. 2020). FLAPS masks 
water bodies (i.e. they are provided as missing values), so we 
imputed zeroes for these areas, under the assumption that 
poultry farms are not located in open water.

To understand how other habitat characteristics influence 
waterfowl use of poultry habitats, we also gathered data on 
land cover variables that might affect waterfowl habitat use: 
herbaceous wetlands, publicly owned lands, open water, and 
rice (Supporting information). Wetland and open water data 
were derived from the National Lland Cover Database 2019 

(Dewitz and US Geological Survey 2021). Public lands data 
were derived from Protected Areas Database of the United 
States (PAD-US) database ver. 2.1 (US Geological Survey 
(USGS) Gap Analysis Project (GAP) 2020); we excluded 
lands used for extractive purposes (e.g. mines) because 
we aimed to represent low human disturbance with this 
layer. Rice data were derived from the US Department of 
Agriculture’s Cropland Data Layer (CDL) (USDA National 
Agricultural Statistics Service 2021). Because rice cover varies 
significantly from year to year, we used annual data from the 
CDL (2015–2020); all other layers were static because they 
vary less year to year than rice and because other data sets 
were available only at multi-annual temporal resolutions. 

Modeling selection for poultry habitats

We used step-selection functions (SSFs; Fortin et  al. 2005, 
Thurfjell et al. 2014) to analyze relationships between habitat 
variables and waterfowl movements. Like resource selection 
functions, SSFs compare habitat characteristics at ‘used’ and 
‘available’ locations to quantify how animals use each habitat 
type relative to its availability on the landscape. In an SSF, 
each ‘used’ location (here, an observed location from GPS 
telemetry) is paired with an arbitrary number of ‘available’ 
locations, which are simulated based on the distributions of 
observed step lengths (i.e. movement distances) and turning 
angles at regular intervals in tracking data. Each observed step 
is compared with its matched available steps, which accounts 
for temporal and spatial patterns in habitat availability and 
autocorrelation in animals’ locations.

First, we sampled each individual’s track to a regular inter-
val, as required by SSFs (Fortin et al. 2005). We performed 
analyses at a 60 min interval for all species except canvas-
backs, for which we used 3 h data. We included a tolerance of 
20% (e.g. 12 min for a 60 min sampling interval, such that 
steps were between 48 and 72 min apart); any fixes more fre-
quent than this interval were discarded, and any steps outside 
this interval were not used for calculations. We calculated 
turning angles and step lengths along each resampled track 
(‘amt’ package in R; Signer et al. 2019, www.r-project.org). 

We randomly drew from the empirical step length and 
turning angle distributions to simulate random steps. We 
used empirical distributions rather than fitting parametric 
distributions because we had a large sample size and because 
commonly used parametric distributions (i.e. exponential 
or gamma for step length; Von Mises for turning angle) fit 
poorly to our data. This poor fit occurred in part because 
turning angle distributions were centered around π (180°) 
rather than 0, which is typical of the back-and-forth ‘com-
muting’ flights of waterfowl. We drew step lengths and 
turning angles from the corresponding distribution for each 
species–season–time of day combination, which means that 
the definition of available habitat incorporates variation in 
movement behavior across species, seasons, and diel periods. 
Seasons were defined following McDuie  et  al. (2019): pre-
hunt/fall (September–October), hunt/winter (November–
January), post-hunt/spring (February–April), and summer 
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(May–August) to capture seasonal behavior (e.g. migration, 
breeding) and hunting disturbance, which is an impor-
tant driver of waterfowl movement behavior in this system 
(Casazza et al. 2012). We also determined time of day (day-
time or nighttime) at a step’s starting time (‘suncalc’ package; 
Thieurmel and Elmarhraoui 2019). We found low correla-
tions between step length and turning angle (r < 0.3 between 
log step length and cosine of turning angle), so we drew step 
lengths and turning angles independently. We simulated 30 
random steps for each observed step. 

We extracted data on habitat at the end point of each used 
or available step at two spatial scales: 300 m and 1 km (‘terra’ 
package; Hijmans 2022). We calculated the proportion cover 
of each habitat type and the mean FLAPS value within 300 
m or 1 km circular moving windows, then extracted values 
of these averaged rasters at the endpoint of the step. Habitat 
patches in the Central Valley are usually at least 300 m apart 
(McDuie et al. 2019), so using habitat variables at this scale 
measures selection at the patch scale; 1 km data represent 
habitat surrounding a patch and are on the scale of other 
models of AIV transmission risk between wild birds and poul-
try (Prosser et al. 2013). For rice, we considered a crop-year 
to begin on 1 April, which is when rice is planted (Hill et al. 
2006), so steps with dates between 1 January and 30 March 
were linked to the CDL from the prior calendar year. 

We then estimated an SSF for each individual–season–
time of day-year combination, at each buffer distance. We 
included only individual–season–time of day-year combina-
tions with at least 50 steps covering at least half the duration of 
the season, below which we found that it was difficult to reli-
ably estimate model parameters. We used conditional logistic 
regression in which the response variable was use of each step 
(a binary variable: used or available) and explanatory variables 
were: mean FLAPS value at a step’s endpoint, proportion her-
baceous wetland cover, proportion open water cover, propor-
tion protected land cover, and proportion rice cover. The full 
model set included all possible combinations of variables, but 
we only included pairs of variables in a model set if their cor-
relation coefficient within an individual data set was ≤ 0.7. 
Models were fit using the clogit function (‘survival’ package; 
Therneau and Grambsch 2000, Therneau 2022). We then 
used Akaike information criterion (AICc)-based model aver-
aging to obtain a single SSF for each individual–season–time 
of day–year–distance combination (Burnham and Anderson 
2002); this process was important because differences in 
habitat composition across the Central Valley (Fleskes et al. 
2018) prevented estimation of fully parameterized models in 
some cases (e.g. because of complete separation). We calcu-
lated a conditional average (also called a subset average) of 
coefficients from all converged models using Akaike weights 
(‘MuMIn’ package; Bartoń 2016). Models not included in 
this average (e.g. due to lack of convergence or collinearity 
between variables) were effectively assigned a model weight of 
zero. Models for each buffer distance (300 m or 1 km) were 
averaged separately. 

Finally, we calculated mean model coefficients from these 
individual-level average models to estimate habitat selection 

for each species, season, time of day, and spatial scale. We only 
included combinations with at least 10 individuals. These 
averages were calculated using inverse-variance weighted 
regression, which calculates the population-level mean selec-
tion coefficient as the mean of the individual-level selection 
coefficients, weighted by the inverse of the standard error (SE) 
for each coefficient in each individual model (Marzluff et al. 
2004, Picardi et al. 2022). When a variable was missing from 
an individual model but was present as ‘available’ habitat in 
that individual’s data set, we imputed the coefficient and SE 
from the model from the same species–season–time of day 
combination with the lowest (i.e. most negative) coefficient 
value for that variable (Knopff  et  al. 2014). This approach 
allowed us to include these strong avoidance values in our 
averages; excluding them could have biased our averages 
towards zero or positive selection. 

We evaluated performance of each averaged model by com-
paring log relative selection strength (log-RSS; Avgar  et  al. 
2017) between observed and random steps. Log-RSS repre-
sents the relative selection of a step ending at a given location, 
compared to a step ending in a location with ‘average’ avail-
able habitat. We used the mean values of land cover variables 
within the study area (i.e. the Central Valley) as this reference 
value. For rice, we used 2021 data. We used the Boyce index 
(Boyce et al. 2002, Hirzel et al. 2006) as our metric of model 
performance because it is designed for presence-only data 
(‘modEvA’ package; Barbosa  et  al. 2013). This continuous 
index ranges between −1 and 1, with higher values indicat-
ing better performance and positive values indicating a model 
that is consistent with the true distribution of presences. 

We also calculated variance in coefficient estimates across 
individuals, time periods, and species to understand which 
groupings and habitat variables contributed the most to 
variation in habitat selection. We again used inverse-variance 
weighted linear regression, then used the SE of the estimated 
mean as a measurement of the average deviance of a coef-
ficient from the group-level mean selection coefficient. We 
calculated this variance for each variable for five groupings 
of the data: 1) individual variation: across all individuals (i.e. 
data grouped by season, time of day, and year); 2) intraspe-
cific individual variation: across individuals, within species 
(i.e. data grouped by season, time of day, year, and species); 
3) diel variation (i.e. data grouped by individual, season, and 
year); 4) seasonal variation (i.e. data grouped by individual, 
time of day, and year); and 5) interannual variation (i.e. data 
grouped by individual, time of day, and season). 

Estimating habitat selection at poultry farms and 
translating selection to transmission risk

Next, we used our habitat selection results to estimate selec-
tion strength at poultry farms in the Central Valley. There is 
no comprehensive database of farm locations in the USA, so 
we used data on farm locations from two sources: locations of 
commercial poultry farms in California (Acosta et al. 2021) 
and simulated locations of backyard farms (Patyk et al. 2020); 
simulations are based on a combination of county-level 
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poultry census data and the FLAPS probability surface. 
We limited the study area to the Central Valley (defined 
by Faunt et al. 2009, Faunt 2012), since the Central Valley 
contains the most intensive poultry farming in California, 
the highest concentration of our GPS tracking data of wild 
waterfowl, and was one of the model-training locations for 
the simulated farm data set (Patyk et al. 2020).

To estimate habitat selection at each farm, we calculated 
log-RSS for each farm and species–season–time of day com-
bination. We calculated log-RSS using species-level average 
coefficients, rather than calculating it for each individual 
model and averaging across individuals (Banner and Higgs 
2017) because this allowed us to use inverse-variance weight-
ing for the average log-RSS (above). Because habitat selection 
results were similar at 300 m and 1 km, we calculated log-
RSS at the 300 m scale only. 

Disease transmission risk also depends on the abundance 
of wild birds and on the probability that a bird is actively 
infected with AIV at the time of contact (among other fac-
tors, such as biosecurity measures; Cross et al. 2019). To mea-
sure abundance, we used estimates for 2021 from the eBird 
Status and Trends data set, which provides weekly maps 
of relative abundance for each species at a 3 km resolution 
(Fink et al. 2022). We calculated the mean of all weekly esti-
mates in each season (defined as above) to obtain a seasonal 
abundance map for each species, then averaged abundance 
values across the study area to obtain a seasonal relative abun-
dance value for each species in our model set. We gathered 
information on AIV infection prevalence in California water-
fowl from published studies (Hill et al. 2012, Bianchini et al. 
2021, Teitelbaum et al. 2022), then pooled data across studies 

(all of which provided sample sizes as well as infection preva-
lence) to estimate species-level average winter LPAI preva-
lence in California. All three studies took place primarily in 
the winter and all detected LPAI only. 

Data supporting analyses are publicly available on the 
USGS ScienceBase repository (doi: 10.5066/P9I1RS1Z; 
Teitelbaum  et  al. 2023b) and code is available at Zenodo 
(doi: 10.5281/zenodo.10119524; Teitelbaum 2023).

Results

We modeled habitat selection for 446 individuals across 10 
waterfowl species and 1552 individual-season-time of day-
year combinations (Supporting information).

Most birds avoided poultry habitats within 300 m  
(i.e. log-RSS < 0), but the strength of avoidance of poul-
try habitats (measured using the FLAPS probability surface) 
varied substantially across species, time of day, individuals, 
and seasons (Fig. 1, Supporting information). The strongest 
avoidance of poultry habitats was by northern shoveler, cin-
namon teal, and mallard (all partial migrants in California). 
At the 300 m scale, the only species-level averages where 
selection for poultry habitats was positive were for American 
wigeon in spring nighttime and canvasback in spring daytime 
(Fig. 1). For ducks, avoidance of poultry habitats was usu-
ally stronger during the day than at night within a given sea-
son. There was no consistent seasonal pattern in selection for 
poultry habitats across species. Patterns of selection were sim-
ilar at the 1 km scale (Supporting information). All 10 spe-
cies selected for wetlands in all seasons and diel periods, with 
stronger selection during daytime (Supporting information). 

Figure 1. Species-level average selection coefficients for poultry habitats. The y-axis shows log relative selection strength (log-RSS), which 
can be interpreted as the relative selection for a location that is 100% suitable for poultry farming within 300 m (FLAPS value = 1) com-
pared to one that is entirely unsuitable (FLAPS value = 0), if all other habitat variables in the model remain unchanged. Negative values 
indicate avoidance of poultry habitats; positive values indicate selection for poultry habitats. Species-level averages are inverse-variance 
weighted means across all individuals and years. Local and partial migrants are in the top row; long-distance migrants are in the bottom row.
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In general, ducks selected for open water, while geese avoided 
it. Selection for rice and protected areas varied across species, 
but the strongest selection for rice was in winter and for pro-
tected areas was in fall and winter. Model performance was 
generally high (mean Boyce index = 0.637) but varied across 
species, seasons, and times of day (Supporting information); 
average model performance was lowest in fall (0.529) and 
highest in winter (0.777).

The highest variability in selection for poultry habitats 
was across diel periods, followed by across years and seasons 
(Fig. 2). Geese were generally more consistent in their selec-
tion than were ducks, across all habitat types (duck selection 
variance > 10 times higher than goose selection variance 
for most data groupings and habitats; Fig. 2, Supporting 
information). Variance in habitat selection was higher for 
poultry habitats than for wetlands, water, or protected areas 
(Supporting information). Variation across individuals (both 
within and among species) was usually lower than variation 
within individuals; in other words, variation in habitat selec-
tion was primarily seasonal, diel, and interannual, rather than 
inter-individual (Fig. 2).

When we estimated habitat selection at poultry farm loca-
tions, we found that most farms were avoided by waterfowl 
(log-RSS < 0, Fig. 3F). Farms were usually located in areas of 
high suitability for poultry farming, low protected area cover, 
low wetland cover, and low open water cover relative to mean 
values in the study area (Fig. 3A–E). Only 1.5% of commer-
cial farms and 3.5% of backyard farms were within 300 m of 
a protected area; these farms had the highest average selec-
tion strength (Fig. 3D–F), since all species selected for pro-
tected areas (Supporting information). Similarly, 13.0% of 

backyard farms and 5.4% of commercial farms were within 
300 m of a wetland, which increased selection strength at 
these farms (Fig. 3A, F), but only 3.4% of the land within 
300 m of these farms was wetland. Some farms in the north-
ern Central Valley were near rice farms (16.8% of farms were 
within 300 m of rice fields, Fig. 3C). Selection strength at 
these poultry farms was positive in winter because rice was 
selected primarily in winter, but these farms were avoided 
in other seasons (Supporting information). Average log-RSS 
values at farms were slightly lower during night than during 
the day, but spatial patterns in mean log-RSS were similar 
across diel periods (Supporting information).

We combined these estimates of habitat selection with 
information on species’ abundances and LPAIV prevalence 
during winter (Fig. 4). On average, cinnamon teal and can-
vasback avoided poultry farms more strongly than northern 
pintail or geese (log-RSS < −0.25; Fig. 4A). Cinnamon teal 
and canvasback were also the least abundant species in the 
Central Valley in winter, whereas geese were the most abun-
dant (Fig. 4B). Finally, cinnamon teal and lesser snow goose 
had the lowest winter LPAIV infection prevalence and north-
ern pintail had the highest (Fig. 4C). Together, these estimates 
suggest that the risk of waterfowl–poultry AIV transmission 
in the Central Valley should be lower for cinnamon teal than 
for northern pintail or geese.

Discussion

Interactions between wildlife and livestock can lead to disease 
transmission. In the Central Valley of California, waterfowl 
that carry avian influenza viruses are abundant, as are farm-
ing operations with dense poultry populations (Acosta et al. 
2021). Here, we analyzed spatiotemporal patterns in selec-
tion for poultry habitats by 10 wild waterfowl species in 
California. We found that waterfowl generally avoided 
poultry habitats within 300 m and 1 km, and that avoid-
ance varied across species and diel periods; avoidance was 
generally stronger for short-distance migrants and during 
the day. When we combined this information with data on 
poultry farm locations, we found that waterfowl generally 
avoided poultry farms, but that selection strength was higher 
at the few farms located near wetlands or protected areas 
(McDuie et al. 2019). Especially when combined with data 
on species’ abundances and infection prevalence, these results 
highlight that habitat selection results can inform biosecurity 
and wildlife management practices by identifying the times 
and places for which cross-species pathogen transmission is 
most likely. 

Although almost all species avoided poultry farms, avoid-
ance was strongest for cinnamon teal, mallard, and northern 
shoveler, which reflects differences in species’ ecology. Mallard 
and teal generally select more strongly for dense vegetation 
compared to other dabbling ducks (Barnum and Euliss 1991, 
Osborn  et  al. 2017), and dense vegetation in the Central 
Valley tends to occur in wetlands (as well as in agricultural 
drainage ditches). This pattern is particularly notable because 

Figure 2. Between- and within-individual variation in selection for 
poultry habitats at the 300 m scale. Colored dots show means for 
each species, triangles show grand means across species, and bars 
show the SE of the mean across species. Variation across species has 
a single value because it includes all coefficient estimates across all 
species. Variation across times of day, years, and seasons are calcu-
lated within individuals and then averaged (arithmetic mean) for 
each species. Note the log scale of the y-axis; error bars are asym-
metrical because means are arithmetic.
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cinnamon teal are most abundant in the southern Central 
Valley, where commercial poultry farms are also concen-
trated, during winter (De Sobrino et al. 2017, Fleskes et al. 
2018). Therefore, knowing that cinnamon teal tend to avoid 
poultry habitats means that the risk of contact with commer-
cial poultry might be smaller than would be expected based 
on spatial distributions alone. We also saw that long-distance 
migrants (northern pintail, American wigeon, canvasback, 
and geese) avoided poultry habitats less strongly than partial 
or local migrants on average. This higher probability of farm 
use in migrants is important because pintail and geese are the 
most abundant species in the Central Valley in winter (Fig. 4, 
Fleskes  et  al. 2018,  Pandolfino and Handel 2018) and, if 
infected, they can disperse AIVs to their high-latitude breed-
ing grounds (Gaidet  et  al. 2010), where cross-continental 
transmission and reassortment of AIVs is more frequent than 
at wintering sites (Hill et al. 2017). Understanding species-
level differences in habitat selection therefore provides impor-
tant information about which species are of most concern for 
AIV transmission and dispersal.

The strongest variation in selection for poultry habitats 
was across diel periods and seasons, which could inform bios-
ecurity needs at poultry farms. Ducks tend to forage at night 

and geese during the day, although all species are behavior-
ally flexible (Tamisier 1976, Gates et al. 2001, Casazza et al. 
2012, Palumbo et al. 2019). The pattern of stronger selection 
for poultry habitats at night in ducks suggests that continu-
ing to remove food sources from poultry farms remains an 
important method for discouraging use. In addition, accept-
able biosecurity strategies for deterrence depend on the time 
of day (e.g. loud noises are often unacceptable at night), 
so deterrence might need to be tailored to time of day that 
waterfowl tend to be near farms (Atzeni et al. 2016). In con-
trast, although seasonality in habitat selection was present, it 
was inconsistent across species, which could pose challenges 
for identifying seasons when AIV transmission risk is high-
est. However, because both abundance and AIV infection 
prevalence vary seasonally (Olsen et al. 2006, Hénaux et al. 
2012, Hill et al. 2012, Ely et al. 2013, van Dijk et al. 2014, 
Samuel et al. 2015), continuing to combine information on 
species-specific habitat selection and abundance with esti-
mates of infection prevalence across seasons will be impor-
tant for prioritizing times of heightened biosecurity and AIV 
surveillance. 

Concentrations of suitable wildlife habitat near cities or 
agricultural areas can attract wildlife into developed areas or, 

Figure 3. Habitat selection and habitat values at poultry farms in the study area. Each point represents a poultry farm (either a commercial 
farm or a simulated backyard farm). (A-E) Relative values of each habitat variable at poultry farms. Negative values (light yellow-green) are 
below the average in the study area, and positive values (dark colors, green to purple) are farms with above-average habitat values. Rice values 
are based on 2021 data. (F) Mean log relative selection strength (log-RSS) at poultry farms. Values are averaged across species, seasons, and 
diel periods. Negative values (cool colors: blue and green) indicate avoidance of farms relative to average habitat in the study area. Positive 
values (warm colors: yellow to red) indicate selection relative to average habitat in the study area. Farms with high positive log-RSS values 
are plotted slightly larger for visualization. See the Supporting information for maps by farm type, season and time of day.
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alternatively, can allow wildlife to avoid areas of the highest 
human development (Wu et al. 2020). Waterfowl move fre-
quently between separate areas for roosting and foraging and 
suitable habitat patches are rarely contiguous in the Central 
Valley’s highly fragmented landscape (McDuie et al. 2019). 
Therefore, while having waterfowl habitat near a farm might 
increase the probability of waterfowl flying nearby or pass-
ing through, it might not increase residence times of birds 
within the boundaries of poultry facilities. Future studies that 
use genetic information to study the source of AIV outbreaks 
in poultry and/or wild birds could help clarify when spatial 
proximity leads to disease transmission. In addition, AIV 
transmission can occur without direct waterfowl–poultry 
contact, for example via bridge species, contaminated water, 
or human movement (Takekawa  et  al. 2010), so further 
investigations into the scales of spatial proximity associated 
with outbreaks could help inform estimates of transmission 
risk (Velkers  et  al. 2021). Data on waterfowl abundance 
could also complement insights from individual-level telem-
etry by identifying landscape features that are associated with 
large numbers of birds settling and/or foraging near farms 
(Acosta  et  al. 2021). Further, spatial proximity is only one 
component of disease transmission risk. In the case of AIVs, 
additional factors that contribute to risk include the current 
strains circulating (e.g. H5 subtypes, which are the current 
dominant HPAI viruses); immune status of wild birds to 
avian influenza viruses; farm size; presence of other wild bird 

taxa; and biosecurity precautions that limit direct or indirect 
contact between wild birds and poultry (Scott  et  al. 2018, 
Verhagen  et  al. 2021, Ayala  et  al. 2022). Considering the 
outcome of interest (e.g. economic impact, wild bird health, 
poultry health) is also important when deciding when and 
where to prioritize management actions.

California’s Central Valley is emblematic of the challenges 
posed by environmental change for both wildlife and agri-
culture. Droughts, which are likely to continue to increase in 
frequency and intensity with anthropogenic climate change 
(Diffenbaugh et al. 2015), affect the spatial distributions and 
habitat use of wild birds in the Central Valley (Matchett et al. 
2021), and thus potentially their interactions with poultry 
farms. For example, if drought reduces the quantity or quality 
of wetland habitat as projected (Matchett and Fleskes 2017), 
climate change could increase waterfowl use of irrigated 
agricultural landscapes, including farm ponds. Conversely, 
limitations on agricultural water use could reduce the attrac-
tiveness of agricultural landscapes for waterfowl (Petrie et al. 
2016, Matchett et al. 2021). We saw that variation in habi-
tat selection was larger across years than across individuals, 
presumably linked to inter-annual changes in environmen-
tal conditions, which shows that waterfowl can respond 
quickly to changing habitat availability (Casazza  et  al. 
2021). This pattern mirrors concerns about the effects of 
environmental change on spillover of other viral infectious 
diseases (Kessler et al. 2018, Carlson et al. 2022) and could 

Figure 4 . Habitat selection, abundance, and infection prevalence contribute to transmission risk. All plots show estimates for winter in the 
Central Valley study area. (A) Mean log relative selection strength (log-RSS) at poultry farms. (B) Relative abundance of the same species 
in the study area. Relative abundance represents numbers of birds. Error bars show SEs of the mean across the study area. (C) Infection 
prevalence in wintering waterfowl based on field sampling data. Error bars show the SE of the mean. The product of these three components 
approximates the relative probability of an infected bird from each species using a farm in the Central Valley during winter.
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interact with direct effects of climate change on avian influenza  
(e.g. environmental persistence; Prosser et al. 2023). Habitat 
selection models like those we used here could help to pre-
dict wildlife distributions and wildlife–poultry contact under 
future environmental change.

Our results highlight the complex potential connections 
between wild waterfowl and poultry farms in an area where 
both waterfowl and poultry farming are abundant. At large 
spatial scales, data on wildlife abundance could sometimes be 
sufficient for developing guidelines (e.g. for biosecurity mea-
sures or surveillance programs), especially if farms are gener-
ally located in unsuitable habitat for wildlife. However, the 
variation we observed in habitat selection across diel periods, 
species, and seasons emphasizes that wildlife–poultry interac-
tions depend on individual behavior. Future similar studies 
would benefit from more precise and reliable information 
on farm locations and land cover. For example, some of the 
poultry data we used were simulated, which prohibits iden-
tifying individual farms at high risk of contact with wildlife. 
Similarly, our land cover data were static or at an annual tem-
poral resolution; using daily or monthly information could 
more accurately predict habitat selection, for example by 
incorporating wetland depth or rice harvest (Matchett et al. 
2021). These patterns could also differ in other regions or 
systems, for example where free-range livestock are com-
mon (Barasona et al. 2014, Prosser et al. 2016b), so integrat-
ing data on livestock behavior and management is another 
important variable for predicting transmission risk. Together, 
these data can identify places and times of the highest risk 
of wildlife–livestock contact, which supports effective disease 
prevention and management strategies.
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